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Inferencia Estad́ıstica. Examen IV

Ejercicio 1 (2,25 puntos). Sea (X1, . . . , Xn) una muestra aleatoria simple de una
variable aleatoria X con distribución en una familia paramétrica.

a) Dar la definición de estad́ıstico suficiente. Enunciar el Teorema de Factoriza-
ción de Neyman–Fisher. Demostrar dicho teorema para variables discretas.

b) Si la función de distribución de X es

Fθ(x) = 1− e−θx, x > 0

encontrar el intervalo de confianza para θ de menor longitud media uniforme-
mente a nivel de confianza 1− α, basado en un estad́ıstico suficiente.

Ejercicio 2 (2,25 puntos). Sea (X1, . . . , Xn) una muestra aleatoria simple de una
variable aleatoria con función de densidad

fθ(x) =
1

2
√
2θ − 1

√
x− 1

, 1 < x < 2θ

a) Sabiendo que T = máxXi es suficiente, encontrar, si existe, el UMVUE pa-
ra (2θ − 1)−1, especificando previamente el espacio paramétrico y el espacio
muestral. Justificar la no existencia del UMVUE en los casos que corresponda.

b) Calcular la función de verosimilitud y encontrar un estimador máximo ve-
rośımil de 2θ − 1.

Ejercicio 3 (2 puntos). Sea X una variable aleatoria con distribución en una familia
regular en el sentido de Fréchet–Cramér–Rao, cuyas funciones de densidad son de
la forma:

fθ(x) = exp

{
T (x) ln θ − θ2

2
+ S(x)

}
x ∈ R, θ ∈ R+

siendo T (X) un estad́ıstico regular.

a) Calcular la función de información asociada a X.

b) Basándose en una muestra aleatoria simple de X, (X1, . . . , Xn), y suponiendo
T (X) > 0, encontrar la clase de funciones paramétricas que admiten estimador
eficiente y los estimadores correspondientes.

c) Bajo los supuestos del apartado b), calcular la cota inferior para la varianza de
estimadores insesgados de ln θ, regulares, y justificar si se alcanza o no dicha
cota.
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Inferencia Estad́ıstica. Examen IV

Ejercicio 4 (2,4 puntos). Contraste de hipótesis:

a) Sea (X1, . . . , Xn) una muestra aleatoria simple de una variable aleatoria X con
distribución en una familia {Pθ | θ ∈ Θ}. Sea Θ0 subconjunto arbitrario de Θ
y supongamos que se pretende contrastar la hipótesis

H0 : θ ∈ Θ0.

a1) Detallar la hipótesis alternativa. Definir formalmente el concepto de test
de hipótesis y dar la interpretación de sus valores.

a2) Definir el tamaño y la función de potencia de un test arbitrario para
resolver el problema anterior, explicando el significado de estos conceptos
en términos del rechazo de H0.

a3) En términos del tamaño y de la función potencia, ¿qué significa que un
test tiene nivel de significación α para el problema de contraste plantea-
do? ¿Cuáles son las condiciones para que un test sea UMP a nivel de
significación α?

b) Obtener un test de razón de verosimilitud de tamaño α para contrastar

H0 : θ ≤ θ0 frente a H1 : θ > θ0,

basado en una observación de una variable aleatoria con la siguiente función
de densidad (detallar y justificar todos los pasos para la obtención, incluyendo
el estudio detallado del estad́ıstico de contraste y su representación gráfica):

fθ(x) = θx−2e−θ/x, x > 0.

¿Qué tamaños se alcanzan con dicho test?

Ejercicio 5 (1,1 puntos). En cierta academia se pretende hacer un estudio sobre
la efectividad de un curso intensivo de aprendizaje. Para ello, se selecciona aleato-
riamente a 10 alumnos a los que se somete a una misma prueba de control antes y
después del curso, obteniéndose las siguientes calificaciones:

A 7,25 7,5 7,5 8 8,5 8,75 8 8,25 7,25 8,5
D 7 8,25 8 8 8,75 9,5 8,5 8,75 7,75 8

¿Se puede concluir, a la vista de los datos, que el curso de aprendizaje no afec-
ta a las calificaciones de los alumnos? Especificar bajo qué condiciones sobre las
variables consideradas se puede resolver este problema y concretar las hipótesis nu-
la y alternativa que se contrastan. Resolver este problema al nivel de significación
0.1 mediante el uso de diferentes tests, detallando las hipótesis necesarias para la
aplicación de cada uno de ellos.
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Inferencia Estad́ıstica. Examen IV

Ejercicio 1 (2,25 puntos). Sea (X1, . . . , Xn) una muestra aleatoria simple de una
variable aleatoria X con distribución en una familia paramétrica.

a) Dar la definición de estad́ıstico suficiente. Enunciar el Teorema de Factoriza-
ción de Neyman–Fisher. Demostrar dicho teorema para variables discretas.

Definición 0.1 (Estad́ıstico Suficiente). Sea (X1, . . . , Xn) una m.a.s. de X ⇝
F ∈ {Fθ, θ ∈ Θ}. Un estad́ıstico T (X1, . . . , Xn) es suficiente para la fami-
lia de distribuciones considerada (o suficiente para θ) si la distribución de la
muestra condicionada a cualquier valor del estad́ıstico, T (X1, . . . , Xn) = t, es
independiente de θ.

Teorema 0.1 (de Factorización de Neyman–Fisher). Sea (X1, . . . , Xn) una
m.a.s de X ⇝ F ∈ {Fθ, θ ∈ Θ}. Sea fθ la función masa de probabilidad o
función de densidad de X bajo Fθ y sea fn

θ la f.m.p. o f.d.d. de la muestra bajo
Fθ. Un estad́ıstico T (X1, . . . , Xn) se dice que es suficiente si y solo si, para
cualquier valor de θ ∈ Θ,

fn
θ (x1, . . . , xn) = h(x1, . . . , xn)gθ(T (X1, . . . , Xn)), ∀(x1, . . . , xn) ∈ X n

donde h es independiente de θ y gθ depende de (x1, . . . , xn) solo a través de
T (x1, . . . , xn).

Demostración. Se demostrará por doble implicación.

=⇒) Supongamos que T ≡ T (X1, . . . , Xn) es suficiente:

Pθ(X1 = x1, . . . , Xn = xn) = Pθ(X1 = x1, . . . , Xn = xn, T = T (x1, . . . , xn)) =

Pθ(X1 = x1, . . . , Xn = xn/T = T (x1, . . . , xn))︸ ︷︷ ︸
h(x1,...,xn)

Pθ(T = T (x1, . . . , xn))︸ ︷︷ ︸
gθ(T (x1,...,xn))

(⇐= Denotamos porX = (X1, . . . , Xn) y a las posibles realizaciones muestrales
x = (x1, . . . , xn). Supongamos que la función masa de probabilidad de la
muestra se factoriza según se indica,

Pθ(X = x) = h(x)gθ(T (x)) ∀x ∈ X n

Para probar la suficiencia de T se calcula la distribución condicionada de
la muestra a un valor arbitrario, T = t.

Pθ(X = x/T = t) =
Pθ(X = x, T = t)

Pθ(T = t)
=

0 si T (x) ̸= t
Pθ(X = x)

Pθ(T = t)
si T (x) = t

Si T (x) = t, entonces

Pθ(X = x) = h(x)gθ(T (x)) = h(x)gθ(t)

Pθ(T = t) =
∑

x′/T (x′)=t

Pθ(X = x′) =
∑

x′/T (x′)=t

h(x′)gθ(T (x
′)) = gθ(t)

∑
x′/T (x′)=t

h(x′)
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Inferencia Estad́ıstica. Examen IV

Aśı, la distribución condicionada es independiente de θ, y T es suficiente
por la Definición 0.1:

P (X = x/T = t) =


0 si T (x) ̸= t

h(x)∑
x′/T (x′)=t

h(x′)
si T (x) = t

lo que concluye la demostración.

b) Si la función de distribución de X es

Fθ(x) = 1− e−θx, x > 0

encontrar el intervalo de confianza para θ de menor longitud media uniforme-
mente a nivel de confianza 1− α, basado en un estad́ıstico suficiente.

Vemos que X ⇝ Exp(θ), dado que Fθ(x) es la función de distribución es la
de una exponencial con parámetro θ ∈ Θ = R+, y X = R+. Para hallar el
estad́ıstico suficiente, usaremos el Teorema 0.1. Primero obtenemos la función
de densidad

fθ(x) =
∂Fθ(x)

∂x
= θe−θx, x > 0

Calculamos ahora la función de densidad conjunta de la muestra

fn
θ (x1, . . . , xn)

indep.
=

n∏
i=1

fθ(xi)

Suponemos en este punto que θ > 0 (de lo contrario, fθ(xi) = 0 ∀i =
1, . . . , n), y vemos que

xi > 0 ∀i = 1, . . . , n ⇐⇒ IR+(xi−0) = 1 ∀i = 1, . . . , n ⇐⇒ IR+(x(1)) = 1

de donde se deduce que

fn
θ (x1, . . . , xn) =

n∏
i=1

θe−θxiIR+(x(1)) = IR+(x(1))θ
ne

−θ


n∑

i=1

xi



Tomando S(X1, . . . , Xn) =
n∑

i=1

Xi y

h(x1, . . . , xn) = IR+(x(1)), gθ(t) = θne−θt

Se cumple que

fn
θ (x1, . . . , xn) = h(x1, . . . , xn)gθ(S(x1, . . . , xn)) ∀(x1, . . . , xn) ∈ X n
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Inferencia Estad́ıstica. Examen IV

donde h es independiente del parámetro θ y gθ depende de la muestra solo
a través del estad́ıstico, luego, por el Teorema de Factorización de Neyman-
Fisher, el estad́ıstico S es suficiente.

Sabemos que S =
∑n

i=1 Xi ⇝ Γ(n, θ), ya que Xi ⇝ Exp(θ) ∀i = 1, . . . , n.

Ahora encontraremos el intervalo de confianza por medio del método de la
cantidad pivotal. Nos piden que el IC esté basado en un estad́ıstico suficiente,
como S. Usaremos la función de densidad de la distribución Γ(p, a), p, a > 0
conocida:

f(x) =
ap

Γ(p)
xp−1e−ax, x > 0

el Teorema de Cambio de Variable, para Y = g(X)

fY (y) = fX(g
−1(y))

∣∣∣∣ ddyg−1(y)

∣∣∣∣
y la relación vista en teoŕıa entre la distribución Γ(p, a) y la χ2(n):

X ⇝ χ2(n) ⇐⇒ X ⇝ Γ

(
n

2
,
1

2

)
(1)

Primero consideramos el cambio Y = θS =⇒ S = Y/θ, y entonces

fY (y) = fS(y/θ)·
1

θ
=

θn

Γ(n)

(y
θ

)n−1

e−θ(y/θ)·1
θ
=

1

Γ(n)
yn−1e−y ⇝ Γ(n, 1), y > 0

Repetimos el mismo procedimiento con el cambio W = 2Y =⇒ Y = 2/W , y
entonces

fW (w) = fY (w/2)·
1

2
=

1

Γ(n)

(w
2

)n−1

e−w/2·1
2
=

(1/2)n

Γ(n)
wn−1e−w/2 ⇝ Γ

(
n,

1

2

)
, w > 0

Por (1), W ⇝ Γ(n, 1/2) ⇐⇒ 2θS = W ⇝ χ2(2n) y podemos considerar
como función pivote, T : X n ×Θ → R, dado por

T ≡ T (X1, . . . , Xn; θ) = 2θS(X1, . . . , Xn) ≡ 2θS

que es una variable aleatoria cuya distribución, χ2(2n), es independiente del
parámetro θ (solo depende de n ∈ N). Además:

a) T es estrictamente monótona en θ, pues

∂T

∂θ
=

∂

∂θ
(2θS) = 2S > 0, ∀θ ∈ Θ, ∀(x1, . . . , xn) ∈ X n = (R+)n

b) T = λ tiene solución en θ, para todo λ ∈ Λ = R+, con Λ la imagen de T ,
pues

T = λ ⇐⇒ 2θS = λ ⇐⇒ θ =
λ

2S
∈ R+
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Inferencia Estad́ıstica. Examen IV

Por un teorema visto en teoŕıa, sabemos que se puede construir un intervalo
de confianza para θ a cualquier nivel de confianza 1 − α, con 0 < α < 1. Por
el método de la cantidad pivotal, buscamos λ1 < λ2 verificando

Pθ(λ1 < T < λ2) = 1− α

Es decir,

λ1 < T < λ2 ⇐⇒ λ1 < 2θS < λ2 ⇐⇒ λ1

2S
< θ <

λ2

2S

y el intervalo tendrá longitud

L =
λ2

2S
− λ1

2S
=

λ2 − λ1

2S

que es constante, luego coincidirá con la longitud esperada Eθ[L] = L ∀θ ∈ Θ.

Sea ahora F la función de distribución de la distribución χ2 de Pearson χ2(2n),
y sea f la correspondiente función de densidad. La restricción es

1− α = Pθ(λ1 < T < λ2) = F (λ2)− F (λ1)

Minimizamos λ2 − λ1 con el método de los multiplicadores de Lagrange visto
en teoŕıa

H(λ1, λ2) = λ2 − λ1 − λ[F (λ2)− F (λ1)− (1− α)]

donde no se ha considerado la parte constante de la longitud media por no
afectar al procedimiento de minimización. Buscamos aquellos λ1, λ2 que mini-
micen H(λ1, λ2), luego obtenemos sus derivadas parciales

∂H

∂λ1

= −1 + λf(λ1)
∂H

∂λ2

= 1− λf(λ2)

Ahora, igualamos ambas parciales a 0 y despejamos λ:

0 =
∂H

∂λ1

= −1 + λf(λ1)

0 =
∂H

∂λ2

= 1− λf(λ2)

 =⇒

λ =
1

f(λ1)

λ =
1

f(λ2)

 =⇒ f(λ1) = f(λ2)

En este caso, la asimetŕıa de la distribución hace que los valores λ1 y λ2 no sean
los de colas iguales. Sin embargo, la diferencia no es suficientemente importante
(sobre todo para grandes muestras), y en la práctica se usa el intervalo de colas
iguales:

λ1 = χ2
2n;1−α/2 λ2 = χ2

2n;α/2

siendo P [χ2
2n > χ2

2n;α/2] = α/2. En conclusión, el intervalo de confianza para
θ de menor longitud media uniformemente a nivel de confianza 1− α, basado
en un estad́ıstico suficiente S es:]

λ1

2S
,
λ2

2S

[
=

]
χ2
2n;1−α/2

2S
,
χ2
2n;α/2

2S

[
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Ejercicio 2 (2,25 puntos). Sea (X1, . . . , Xn) una muestra aleatoria simple de una
variable aleatoria con función de densidad

fθ(x) =
1

2
√
2θ − 1

√
x− 1

, 1 < x < 2θ

a) Sabiendo que T = máxXi es suficiente, encontrar, si existe, el UMVUE pa-
ra (2θ − 1)−1, especificando previamente el espacio paramétrico y el espacio
muestral. Justificar la no existencia del UMVUE en los casos que corresponda.

Buscamos obtener el UMVUE mediante el método alternativo visto en teoŕıa.
Para ello, en primer lugar hay que encontrar un estad́ıstico suficiente y comple-
to T , y luego una función del estad́ıstico h(T ) (denotaremos indistintamente

T
not≡ T (X1, . . . , Xn), para una m.a.s. (X1, . . . , Xn) con n ∈ N fijo) insesgada

en g(θ) = (2θ − 1)−1, estimadora y con momento de segundo orden finito.
Entonces h(T ) será el UMVUE.

Ya sabemos que T = X(n) es suficiente por el enunciado. Ahora, hay que
comprobar que este estad́ıstico es completo, lo cual se hará por definición.
Sabemos por teoŕıa que la distribución del máximo es

FT (t) = (FX(t))
n =⇒ fT (t) = n(FX(t))

n−1fθ(t)

Hallamos ahora la función de distribución de X:

FX(t) =

∫ t

1

fθ(x)dx =

∫ t

1

1

2
√
2θ − 1

√
x− 1

dx =
1

2
√
2θ − 1

∫ t

1

1√
x− 1

dx =

1

2
√
2θ − 1

·
[
2
√
x− 1

]t
1
=

2
√
t− 1

2
√
2θ − 1

=

√
t− 1√
2θ − 1

1 < t < 2θ

La función de densidad del estad́ıstico será entonces

fT (t) = n(FX(t))
n−1fθ(t) = n

( √
t− 1√
2θ − 1

)n−1
1

2
√
2θ − 1

√
t− 1

=

(
√
t− 1)n−1

(
√
2θ − 1)n−1

n

2
√
2θ − 1

√
t− 1

=
n(
√
t− 1)n−2

2(
√
2θ − 1)n

1 < t < 2θ

Sea h una función medible verificando

0 = E[h(T )]
def
=

∫ 2θ

1

h(t)fT (t)dt =

∫ 2θ

1

h(t)
n(
√
t− 1)n−2

2(
√
2θ − 1)n

dt =

n

2(
√
2θ − 1)n

∫ 2θ

1

h(t)(
√
t− 1)n−2dt

como
n

2(
√
2θ − 1)n

̸= 0 ∀n ∈ N, ∀θ ∈ Θ =

]
1

2
,+∞

[
, debe ser

∫ 2θ

1

h(t)(
√
t− 1)n−2dt = 0
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Por el Teorema Fundamental del Cálculo, podemos considerar una primitiva
H(t) del integrando h(t)(

√
t− 1)n−2, y esta cumple, por la Regla de Barrow,

que H(2θ)−H(1) = 0 ∀θ ∈ Θ. Derivando respecto de θ, se obtiene que

d

dθ
H(2θ) = 0 ⇐⇒ 2h(2θ)(

√
2θ − 1)n−2 = 0

(∗)⇐⇒ h(2θ) = 0

donde en (∗) se ha usado que 2(
√
2θ − 1)n−2 ̸= 0 por ser θ ∈ Θ y 2 > 0.

Equivalentemente,

∀θ ∈ Θ h(2θ) = 0 ⇐⇒ h(t) = 0 ∀t > 1

(tomando t = 2θ ∈ ]1,+∞[). Por tanto

]1,+∞[ ⊆ {t : h(t) = 0}

y consecuentemente

1 ⩾ P [h(T ) = 0] ⩾ P [T > 1] = 1 =⇒ P [h(T ) = 0] = 1

y entonces por definición concluimos que T es un estad́ıstico completo. Tene-
mos entonces en este punto que T es un estad́ıstico suficiente y completo.

Ahora hay que buscar un estimador insesgado en g(θ) y de segundo orden
finito. Sea h (independiente de la anterior) función medible tal que

(2θ − 1)−1 = g(θ) = E[h(T )] =
n

2(
√
2θ − 1)n

∫ 2θ

1

h(t)(
√
t− 1)n−2dt ⇐⇒

∫ 2θ

1

h(t)(
√
t− 1)n−2dt =

2(
√
2θ − 1)n

n
(2θ − 1)−1 =

2(2θ − 1)
n
2
−1

n

Derivamos respecto de θ a ambos lados e igualamos. El miembro izquierdo ya
lo tenemos por el apartado anterior:

2h(2θ)(
√
2θ − 1)n−2

y el derecho es

2

n

(n
2
− 1
)
(2θ − 1)

n
2
−2 · 2 =

(
2− 4

n

)
(2θ − 1)

n
2
−2 =

2n− 4

n
(2θ − 1)

n
2
−2

Despejamos h(2θ):

2h(2θ)(
√
2θ − 1)n−2 =

2n− 4

n
(2θ − 1)

n
2
−2 ⇐⇒

h(2θ) =
2n− 4

2n

(2θ − 1)
n
2
−2

(
√
2θ − 1)n−2

=
n− 2

n

(2θ − 1)
n
2
−2

(2θ − 1)(n−2)/2
=

n− 2

n

1

2θ − 1

de donde

h(t) =
n− 2

n

1

t− 1

11
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Por construcción h(T ) es insesgada en g(θ). Vemos que h(T ) también es esti-
mador de g(θ), pues Θ = ]1/2,+∞[, y g(θ) = 1

2θ−1
=⇒ g(Θ) = ]0,+∞[. Como

T = X(n) > 1, entonces T − 1 > 0, y n−2
n

> 0 si n ⩾ 3, luego h(T ) > 0 si
n ⩾ 3. Queda comprobar que tiene momento de segundo orden finito.

Ello se cumplirá en caso de que E[h(T )2] < +∞:

E[h(T )2]
def
=

∫ 2θ

1

h(t)2fT (t)dt =

∫ 2θ

1

(
n− 2

n

)2
1

(t− 1)2
n(
√
t− 1)n−2

2(
√
2θ − 1)n

dt =

(n− 2)2

2n(2θ − 1)n/2

∫ 2θ

1

(t− 1)(n−6)/2dt =
(n− 2)2

2n(2θ − 1)n/2
2

(n− 4)

[
(t− 1)(n−4)/2

]2θ
1

=

(n− 2)2

n(n− 4)

(2θ − 1)(n−4)/2

(2θ − 1)n/2
=

(n− 2)2

n(n− 4)

1

(2θ − 1)2

Y vemos que E[h(T )2] < +∞ ⇐⇒ n > 4, ya que si n ⩽ 4, el momento de
segundo orden no es finito. Por tanto, por el Teorema de Lehmann-Scheffé,
E[h(T )/T ] = h(T ) es el UMVUE para g(θ), y existe siempre y cuando

n > 4 ⇐⇒ n ⩾ 5

b) Calcular la función de verosimilitud y encontrar un estimador máximo ve-
rośımil de 2θ − 1.

Como

fθ(x) =
1

2
√
2θ − 1

√
x− 1

, 1 < x < 2θ

Entonces

fn
θ (x1, . . . , xn)

indep
=

n∏
i=1

fθ(xi)

A partir de aqúı asumimos que xi > 1 ∀i = 1, . . . , n ⇐⇒ x(1) > 1. En otro
caso, fθ(xi) = 0 ∀i = 1, . . . , n. Tenemos que

xi < 2θ ∀i = 1, . . . , n ⇐⇒ x(n) < 2θ ⇐⇒ IR−(x(n) − 2θ) = 1

Entonces

fn
θ (x1, . . . , xn)

indep
=

n∏
i=1

fθ(xi) =
n∏

i=1

1

2
√
2θ − 1

√
xi − 1

IR−(x(n) − 2θ) =

1

(2
√
2θ − 1)n

n∏
i=1

1√
xi − 1

IR−(x(n) − 2θ)

La función de verosimilitud de θ será entonces

Lx1,...,xn(θ) = fn
θ (x1, . . . , xn) =

1

(2
√
2θ − 1)n

n∏
i=1

1√
xi − 1

IR−(x(n) − 2θ)

12
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Consideramos la función paramétrica λ = g(θ) = 2θ − 1, con g : Θ → Λ. Por
definición de función de verosimilitud de una función paramétrica, consideran-
do una realización muestral (x1, . . . , xn) ∈ X n, con X = ]1,+∞[, obtenido del
apartado anterior:

Mx1,...,xn(λ) = sup
θ∈g−1(λ)

Lx1,...,xn(θ)

Ahora expresamos θ expĺıcitamente en función de λ, usando que

λ = 2θ − 1 ⇐⇒ λ+ 1 = 2θ ⇐⇒ θ =
λ+ 1

2

Aśı pues, la función de verosimilitud de la función paramétrica g(θ) es

Mx1,...,xn(λ) = Lx1,...,xn

(
λ+ 1

2

)
=

1

(2
√
λ)n

n∏
i=1

1√
xi − 1

IR−(x(n) − (λ+ 1))

Ahora, puede razonarse que, expresando la función de verosimilitud en función
de lambda, debe ser x(n) < λ+1 ⇐⇒ λ > x(n)−1 y como

∏n
i=1

1√
xi−1

> 0 no

influye en el estudio de la monotońıa, la monotońıa la determina
1

(2
√
λ)n

=

(2
√
λ)−n, que es estrictamente decreciente como función de λ, hecho del cual

se deduce que el máximo se alcanza en el ı́nfimo de ]x(n) − 1,+∞[. Por tanto,

λ̂(x1, . . . , xn)
not≡ λ̂ = x(n) − 1 es el EMV de λ = g(θ) = 2θ − 1.

13
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Ejercicio 3 (2 puntos). Sea X una variable aleatoria con distribución en una familia
regular en el sentido de Fréchet–Cramér–Rao, cuyas funciones de densidad son de
la forma:

fθ(x) = exp

{
T (x) ln θ − θ2

2
+ S(x)

}
x ∈ R, θ ∈ R+

siendo T (X) un estad́ıstico regular.

a) Calcular la función de información asociada a X.

Por el enunciado se deduce que (X1, . . . , Xn) m.a.s de X es de tamaño n = 1,
y que solo hay una observación de X. Por ser T regular, se cumple que

∂

∂θ
Eθ[T (X1, . . . , Xn)] = Eθ

[
T (X1, . . . , Xn)

∂ ln fn
θ (X1, . . . , Xn)

∂θ

]
en particular para n = 1

∂

∂θ
Eθ[T (X)] = Eθ

[
T (X)

∂ ln fθ(X)

∂θ

]
Primero usamos que la familia es regular

Eθ

[
∂ ln fθ(X)

∂θ

]
= 0 ⇐⇒ Eθ

[
T (X)

θ
− θ

]
= 0 ⇐⇒ 1

θ
Eθ[T (X)]−θ = 0 ⇐⇒

Eθ[T (X)] = θ2

y entonces
∂

∂θ
Eθ[T (X)] =

∂

∂θ
(θ2) = 2θ

Calculando

ln fθ(X) = T (X) ln θ − θ2

2
+ S(X)

∂ ln fθ(X)

∂θ
=

T (X)

θ
− θ

Como

Eθ

[
T (X)

∂ ln fθ(X)

∂θ

]
= Eθ

[
T (X)

(
T (X)

θ
− θ

)]
=

1

θ
Eθ[T (X)2]−θEθ[T (X)]

Eθ[T (X)]=θ2

=

1

θ
Eθ[T (X)2]− θ3

Tenemos que

2θ =
∂

∂θ
Eθ[T (X)] = Eθ

[
T (X)

∂ ln fθ(X)

∂θ

]
=

1

θ
Eθ[T (X)2]− θ3 ⇐⇒

2θ =
1

θ
Eθ[T (X)2]− θ3 ⇐⇒ Eθ[T (X)2] = θ(2θ + θ3) = 2θ2 + θ4

14
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Ahora, sabemos que la función de información asociada a X puede calcularse
usando

IX(θ) = Eθ

[(
∂ ln fθ(X)

∂θ

)2
]

∀θ ∈ Θ

Desarrollando

IX(θ) = Eθ

[(
∂ ln fθ(X)

∂θ

)2
]
= Eθ

[(
T (X)

θ
− θ

)2
]
= Eθ

[(
T (X)

θ

)2

− 2 · T (X) + θ2

]
=

1

θ2
Eθ[T (X)2]−2Eθ[T (X)]+Eθ[θ

2]
Eθ[T (X)]=θ2

=
1

θ2
Eθ[T (X)2]−2θ2+θ2

Eθ[T (X)2]=2θ2+θ4

=

1

θ2
(2θ2 + θ4)− θ2 = 2 + θ2 − θ2 = 2

b) Basándose en una muestra aleatoria simple de X, (X1, . . . , Xn), y suponiendo
T (X) > 0, encontrar la clase de funciones paramétricas que admiten estimador
eficiente y los estimadores correspondientes.

Buscamos aplicar el Teorema de Caracterización de Estimadores Eficientes.
Para ello, obtenemos la función conjunta de la m.a.s. de X

fn
θ (x1, . . . , xn)

indep
=

n∏
i=1

fθ(xi)

Se supondrá a partir de ahora que xi ∈ R ∀i = 1, . . . , n y θ ∈ R+. De lo
contrario, fθ(x) = 0.

fn
θ (x1, . . . , xn)

indep
=

n∏
i=1

fθ(xi) =
n∏

i=1

e

(
T (xi) ln θ− θ2

2
+S(x)

)
= e

(
ln θ(

∑n
i=1 T (xi))−nθ2

2
+
∑n

i=1 S(x)
)
=

exp

{
ln θ

(
n∑

i=1

T (xi)

)
− nθ2

2
+

n∑
i=1

S(x)

}

ln fn
θ (x1, . . . , xn) = ln θ

(
n∑

i=1

T (xi)

)
− nθ2

2
+

n∑
i=1

S(x)

∂ ln fn
θ (x1, . . . , xn)

∂θ
=

1

θ

(
n∑

i=1

T (xi)

)
− nθ =

1

θ

(
n∑

i=1

T (Xi)− nθ2

)

Ahora, supongamos que T (X1, . . . , Xn) es un estimador de g(θ) función pa-
ramétrica derivable y estrictamente monótona (g′(θ) ̸= 0 ∀θ ∈ Θ = R+).
Como el enunciado nos dice que la familia es regular, y 0 < IX(θ) = 2 <
+∞ ∀θ ∈ Θ, T es eficiente si y solo si ∀θ ∈ Θ ∃a(θ) ̸= 0 tal que

Pθ

[
∂ ln fn

θ (X1, . . . , Xn)

∂θ
= a(θ)[T (X1, . . . , Xn)− g(θ)]

]
= 1

15
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y
I(X1,...,Xn)(θ) = a(θ)g′(θ)

Como
∂ ln fn

θ (X1, . . . , Xn)

∂θ
= a(θ)[T (X1, . . . , Xn)− g(θ)] ⇐⇒

1

θ

(
n∑

i=1

T (Xi)− nθ2

)
= a(θ)[T (X1, . . . , Xn)− g(θ)]

claramente por comparación se obtiene que

T (X1, . . . , Xn) =
n∑

i=1

T (Xi), g(θ) = nθ2, a(θ) =
1

θ

y tanto a(θ) como g(θ) verifican todas las condiciones del teorema, pues g′(θ) =
2nθ > 0, porque θ > 0 y 2n ⩾ 2, y usando la aditividad de la función de
información de Fisher

2n = nIX(θ) = I(X1,...,Xn)(θ) = a(θ)g′(θ) =
1

θ
2nθ = 2n

Por un corolario visto en teoŕıa, como T (X1, . . . , Xn) es un estimador eficiente
para g(θ), con g′(θ) ̸= 0, sabemos que las únicas funciones paramétricas que
admiten estimadores eficientes son las de la forma ag(θ) + b y los correspon-
dientes estimadores eficientes son aT + b, con probabilidad 1, bajo todas las
distribuciones de la familia.

c) Bajo los supuestos del apartado b), calcular la cota inferior para la varianza de
estimadores insesgados de ln θ, regulares, y justificar si se alcanza o no dicha
cota.

En este apartado g(θ) = ln θ. Ya se han comprobado las hipótesis del Teorema
de Cota de FCR en el apartado b), y supuesto que los estimadores insesgados
sean además de segundo orden (si no, la varianza no será finita), se tiene que
la cota inferior de la varianza es, tomando como uno de estos estimadores
T (X1, . . . , Xn):

Varθ[T (X1, . . . , Xn)] ⩾
(g′(θ))2

I(X1,...,Xn)(θ)
∀θ ∈ Θ

Ahora, g′(θ) = 1/θ, y ya hemos visto que I(X1,...,Xn)(θ) = nIX(θ) = 2n, luego
la cota inferior para la varianza de todo estos estimadores será

Varθ[T (X1, . . . , Xn)] ⩾
(1/θ)2

2n
=

1

2nθ2

La cota no se alcanza por reducción al absurdo. Si lo hiciera, entonces tendŕıamos
que g(θ) = ln θ admitiŕıa un estimador regular, insesgado y cuya varian-
za alcanza la cota de FCR para cualquier valor θ ∈ Θ, es decir, un es-
timador eficiente (dado que {Fθ : θ ∈ Θ = R+} es una familia regular,
0 < IX(θ) = 2 < +∞ ∀θ ∈ Θ y g(θ) = ln θ es una función paramétrica deri-
vable). Sin embargo, hemos visto en b) que las únicas funciones paramétricas
que admiten estimador eficiente en esta familia son las de la forma anθ2 + b,
a, b ∈ R. Como ∄a, b ∈ R : ln θ = anθ2 + b, hemos llegado a contradicción.
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Ejercicio 4 (2,4 puntos). Contraste de hipótesis:

a) Sea (X1, . . . , Xn) una muestra aleatoria simple de una variable aleatoria X con
distribución en una familia {Pθ | θ ∈ Θ}. Sea Θ0 subconjunto arbitrario de Θ
y supongamos que se pretende contrastar la hipótesis

H0 : θ ∈ Θ0

a1) Detallar la hipótesis alternativa. Definir formalmente el concepto de test
de hipótesis y dar la interpretación de sus valores.

La hipótesis alternativa es la negación de la hipótesis nula H0, y se denota
por

H1 : θ ∈ Θ1 = Θ−Θ0

El problema de contraste de hipótesis, en general, es el siguiente: se cons-
trasta la hipótesis nula, H0 : θ ∈ Θ0, frente a la hipótesis alternativa,
H1 : θ ∈ Θ1. La hipótesis sobre el parámetro establece una partición so-
bre el espacio paramétrico, pues Θ = Θ0 ∪ Θ1 y Θ0 ∩ Θ1 = ∅, y además
sobre la familia de distribuciones, ya que

{Fθ, θ ∈ Θ} = {Fθ, θ ∈ Θ0} ∪ {Fθ, θ ∈ Θ1}

La definición formal del concepto de test de hipótesis es la siguiente:

Definición 0.2 (Test de Hipótesis). Un test de hipótesis es un estad́ıstico,
φ(X1, . . . , Xn), con valores en [0, 1], que especifica la probabilidad de
rechazar H0 para cada realización muestral.

Distinguimos dos tipos de test de hipótesis, los no aleatorizados y los
aleatorizados.

En los no aleatorizados, se considera la región cŕıtica o de rechazo C ⊂ X n,
que es aquella en la que se rechaza con probabilidad 1 la hipótesis nula
H0 y el test se puede escribir como φ : X n → {0, 1}, dado por

φ(X1, . . . , Xn) =

{
1 si (X1, . . . , Xn) ∈ C
0 si (X1, . . . , Xn) /∈ C

En los aleatorizados, el codominio del test se extiende a [0, 1], y el test es
φ : X n → [0, 1], donde φ(X1, . . . , Xn) es la probabilidad de rechazar la
hipótesis nula H0 en cada realización muestral, al igual que en el caso de
los tests no aleatorizados.
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a2) Definir el tamaño y la función de potencia de un test arbitrario para re-
solver el problema anterior, explicando el significado de estos conceptos
en términos del rechazo de H0.

Se define la función de potencia de un test arbitrario como sigue:

Definición 0.3 (Función de Potencia). Para un test φ, se define la fun-
ción de potencia como la función que asocia a cada parámetro, θ, la proba-
bilidad media de rechazar H0 cuando el (verdadero) valor del parámetro
es θ

βφ : Θ −→ [0, 1]
θ 7−→ Bφ(θ) = Eθ[φ(X1, . . . , Xn)]

En el caso de un test no aleatorizado, se puede definir como

βφ : Θ −→ [0, 1]
θ 7−→ Bφ(θ) = Pθ[(X1, . . . , Xn) ∈ C]

Asimismo, se define el tamaño de un test arbitrario de la siguiente forma,
recordando que un error de tipo I consiste en rechazar la hipótesis nula
H0 siendo esta verdadera:

Definición 0.4 (Tamaño de un Test). Para un test φ, se define el tamaño
del test como la máxima probabilidad media de cometer un error de tipo
I con dicho test, es decir

sup
θ∈Θ0

Eθ[φ(X1, . . . , Xn)] = sup
θ∈Θ0

Bφ(θ)

En el caso de un test φ no aleatorizado, se puede definir como

sup
θ∈Θ0

Pθ[(X1, . . . , Xn) ∈ C]

a3) En términos del tamaño y de la función potencia, ¿qué significa que un
test tiene nivel de significación α para el problema de contraste plantea-
do? ¿Cuáles son las condiciones para que un test sea UMP a nivel de
significación α?

El nivel de significación se define por:

Definición 0.5 (Nivel de Significación). Se dice que φ es un test de
hipótesis con nivel de significación α ∈ [0, 1] si su tamaño es menor o
igual que α (actuando α como cota superior de las probabilidades medias
de cometer un error de tipo I), es decir:

∀θ ∈ Θ0, βφ(θ) = Eθ[φ(X1, . . . , Xn)] ⩽ α

En el caso de un test φ no aleatorizado, se puede definir como

∀θ ∈ Θ0, Pθ[(X1, . . . , Xn) ∈ C] ⩽ α

18
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Por lo tanto, un test tiene nivel de significación α ∈ [0, 1] si su tamaño,
es decir, el supremo de la función de potencia en el espacio paramétrico
de la hipótesis nula, es menor o igual que α.

Se dice que un test es uniformemente más potente a nivel de significación
α si verifica la Definición 0.6:

Definición 0.6 (Test Uniformemente Más Potente (UMP)). Dado un
nivel de significación α fijo, se dice que un test φ es uniformemente más
potente (UMP), a ese nivel, si se cumplen las siguientes dos condiciones:

1) φ tiene nivel de significación α, es decir

Eθ[φ(X1, . . . , Xn)] ⩽ α ∀θ ∈ Θ0

2) Para cualquier otro test φ∗, con nivel de significación α, se cumple
que la función de potencia en φ es mayor que en φ∗, para cualquier
θ ∈ Θ1. Equivalentemente

Bφ(θ) ⩾ βφ∗(θ) ∀θ ∈ Θ1

El hecho de considerar la maximización solo en Θ1 y no en Θ0 la función
de potencia se debe a que se busca minimizar el error de tipo II, que
consiste en no rechazar H0 siendo H0 falsa.

En general, no tiene porqué existir un test UMP para un problema dado.

b) Obtener un test de razón de verosimilitud de tamaño α para contrastar

H0 : θ ≤ θ0 frente a H1 : θ > θ0,

basado en una observación de una variable aleatoria con la siguiente función
de densidad (detallar y justificar todos los pasos para la obtención, incluyendo
el estudio detallado del estad́ıstico de contraste y su representación gráfica):

fθ(x) = θx−2e−θ/x, x > 0.

¿Qué tamaños se alcanzan con dicho test?

Dado que las hipótesis no son simples, no podemos aplicar el Lema de Neyman-
Pearson, por lo que habrá que utilizar el Test de la Razón de Verosimilitudes
(TRV). Se tiene que X = R+ y la muestra se compone de una única observación
(pongamos que x0 es el valor obtenido en la realización muestral). Obtenemos
ahora el EMV de θ.

Lx0(θ) = fθ(x0) = θx−2
0 e−θ/x0 =⇒ ln fθ(x0) = ln θ − 2 ln x0 − θ/x0 =⇒

∂ ln fθ(x0)

∂θ
=

1

θ
− 1

x0

=
x0 − θ

x0θ
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Resolviendo la ecuación de verosimilitud

∂ ln fθ(x0)

∂θ
= 0 ⇐⇒ x0 − θ

x0θ
= 0 ⇐⇒ θ = x0

Como
∂2 ln fθ(x0)

∂2θ
= − 1

θ2
< 0

se tiene que θ̂ = x0 es el EMV de θ. La razón de verosimilitudes es entonces

λ(x0) =
supθ∈Θ0

Lx0(θ)

supθ∈Θ Lx0(θ)
, x0 ∈ X

Como θ̂ es el EMV de x0, entonces supθ∈Θ Lx0(θ) = Lx0(x0). Ahora, estudiamos
la monotońıa respecto de θ de la función de verosimilitud

Lx0(θ) = θx−2
0 e−θ/x0 =⇒ ∂Lx0(θ)

∂θ
= x−2

0

(
e−θ/x0 + θe−θ/x0

−1

x0

)
= x−2

0 e−θ/x0

(
1− θ

x0

)
Como x−2

0 e−θ/x0 > 0 el signo lo determinará el factor 1 − θ/x0. Hay tres
posibilidades:

a) Si 1 − θ/x0 < 0 ⇐⇒ 1 < θ/x0 ⇐⇒ x0 < θ, entonces Lx0(θ) es
decreciente.

b) Si 1−θ/x0 > 0 ⇐⇒ 1 > θ/x0 ⇐⇒ x0 > θ, entonces Lx0(θ) es creciente.

c) Si 1 − θ/x0 = 0 ⇐⇒ 1 = θ/x0 ⇐⇒ θ = x0, sabemos que se llega al
EMV de θ.

Por lo tanto, Lx0(θ) es creciente en ]0, x0[ y decreciente en ]x0,+∞[. Usando
esto, se deduce que

sup
θ∈Θ0

Lx0(θ) =

{
Lx0(x0) si x0 ⩽ θ0

Lx0(θ0) si x0 > θ0

y como
Lx0(θ0)

Lx0(x0)
=

θ0x
−2
0 e−θ0/x0

x0x
−2
0 e−x0/x0

=
θ0
x0

e1−θ0/x0

la razón de verosimilitudes se escribe de la siguiente forma

λ(x0) =


Lx0(x0)

Lx0(x0)
= 1 si x0 ⩽ θ0

Lx0(θ0)

Lx0(x0)
=

θ0
x0

e1−θ0/x0 si x0 > θ0

Por construcción 0 ⩽ λ(x0) ⩽ 1, y el test de razón de verosimilitud (TRV) es:

φ(X) =

{
1 si λ(X) < c

0 si λ(X) ⩾ c
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donde c ∈]0, 1] es constante y se determina imponiendo el tamaño o nivel de
significación α ∈ [0, 1].

Estudiamos ahora la monotońıa de λ. Si x > θ0 consideramos el cambio de
variable t = θ0/x ∈ ]0, 1[ (como fθ(x) es densidad, debe ser θ > 0 para que
pueda integrar a 1, y x ∈ X = R+), de donde λ(x) = te1−t = g(t). Como

g′(t) = e1−t + te1−t · (−1) = e1−t(1− t) > 0 ∀t ∈]0, 1[

vemos que g es creciente en t, pero t = θ0/x crece si x decrece, luego λ(x)
es estrictamente decreciente en ]θ0,+∞[. Además λ(θ0) = 1 y ĺım

x→∞
λ(x) = 0.

Gráficamente:

x

λ

kθ0

c

1

Luego
λ < c
λ ⩾ c

}
⇐⇒

{
x > k
x ⩽ k

con k ⩾ θ0

Por lo que el test a considerar será:

φ(X) =

{
1 si X > k

0 si X ⩽ k

Imponemos tamaño α:

α = sup
θ∈Θ0

Eθ[φ(X)] = sup
θ⩽θ0

Pθ[X > k]

Como
fθ(x) = θx−2e−θ/x

entonces considerando el cambio u = θ/t =⇒ t = θ/u =⇒ dt = − θ

u2
, y

t−2 = (u/θ)2, sustituyendo

θt−2e−θ/tdt = θ
(u
θ

)2
e−u

(
− θ

u2
du

)
= −e−udu

y viendo que si t → 0+ =⇒ u = θ/t → +∞ y si t = x =⇒ u = θ/x, se tiene
que

Fθ(x) =

∫ t

0

fθ(t)dt =

∫ t

0

θx−2e−θ/xdt =
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∫ θ/x

+∞
−e−udu =

∫ +∞

θ/x

e−udu = [−e−u]+∞
θ/x = e−θ/x

Aśı pues, para x ∈ X , Fθ(x) = e−θ/x, de donde

Pθ[X > k] = 1− Fθ(k) = 1− e−θ/k

Entonces el tamaño queda

α = sup
θ⩽θ0

Pθ[X > k] = Pθ0 [X > k] = 1− e−θ0/k

y k queda determinado por

α = 1−e−θ0/k ⇐⇒ α−1 = −e−θ0/k ⇐⇒ 1−α = e−θ0/k ⇐⇒ ln(1−α) = −θ0/k ⇐⇒

k = − θ0
ln(1− α)

y el TRV no aleatorizado es

φ(X) =


1 si X > − θ0

ln(1− α)

0 si X ⩽ − θ0
ln(1− α)

Los tamaños que se alcanzan con este test pueden hallarse considerando el
tamaño como función de k

α(k) = 1− e−θ/k, k > 0

Vemos que
ĺım

k→+∞
α(k) = ĺım

k→+∞
(1− e−θ/k) =

1− ĺım
k→+∞

e−θ/k = 1− e0 = 0

y que el menor k se obtiene cuando k = θ0, con α(θ0) = 1− e−θ0/θ0 = 1− e−1.
Por lo tanto, los tamaños que pueden obtenerse con el TRV no aleatorizado
son

α ∈ [0, 1− e−1]

Para obtener cualquier tamaño α ∈ [0, 1] hay que aleatorizar el TRV, es decir,
considerar un test de la forma

φ(X) =


1 si λ(X) < c

γ si λ(X) = c

0 si λ(X) > c

γ ∈ [0, 1]

Y como λ(x) = 1 ∀x ⩽ θ0 y λ(x) < 1 ∀x > θ0, lo natural es tomar c = 1, y
entonces
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φ(X) =


1 si λ(X) < 1 ⇐⇒ X > θ0

γ si λ(X) = 1 ⇐⇒ X ⩽ θ0

0 si λ(X) > 1 nunca

γ ∈ [0, 1]

es decir

φ(X) =

{
1 si X > θ0

γ si X ⩽ θ0
γ ∈ [0, 1]

Si X > θ0 se rechaza siempre, y si X ⩽ θ0 se rechaza con probabilidad γ.
Imponiendo tamaño α:

α = sup
θ∈Θ0

Eθ[φ(X)] = Eθ0 [φ(X)] = Pθ0 [X > θ0] + γPθ0 [X ⩽ θ0]

y como
Pθ0 [X > θ0] = 1− e−1 Pθ0 [X ⩽ θ0] = e−1

sacamos
α = (1− e−1) + γe−1

De esta manera, dado un tamaño α ∈ [1− e−1, 1], se obtiene que

α = (1−e−1)+γe−1 ⇐⇒ α−(1−e−1) = γe−1 ⇐⇒ γ =
α− (1− e−1)

e−1
∈ [0, 1]

y el TRV aleatorizado es

φ(X) =

1 si X > θ0
α− (1− e−1)

e−1
si X ⩽ θ0

Y ya podemos cubrir cualquier tamaño α ∈ [0, 1]:

a) Si α ∈ [0, 1− e−1], el TRV que se toma es el no aleatorizado:

φ(X) =


1 si X > − θ0

ln(1− α)

0 si X ⩽ − θ0
ln(1− α)

b) Si α ∈ [1− e−1, 1], el TRV que se toma es el aleatorizado:

φ(X) =

1 si X > θ0
α− (1− e−1)

e−1
si X ⩽ θ0

Si α = 1− e−1:

φ(X) =


1 si X > − θ0

ln(1− α)

0 si X ⩽ − θ0
ln(1− α)

⇐⇒

1 si X > θ0
α− (1− e−1)

e−1
= 0 si X ⩽ θ0

por lo que el TRV no aleatorizado y el TRV aleatorizado coinciden.
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Ejercicio 5 (1,1 puntos). En cierta academia se pretende hacer un estudio sobre
la efectividad de un curso intensivo de aprendizaje. Para ello, se selecciona aleato-
riamente a 10 alumnos a los que se somete a una misma prueba de control antes y
después del curso, obteniéndose las siguientes calificaciones:

A 7,25 7,5 7,5 8 8,5 8,75 8 8,25 7,25 8,5
D 7 8,25 8 8 8,75 9,5 8,5 8,75 7,75 8

¿Se puede concluir, a la vista de los datos, que el curso de aprendizaje no afecta
a las calificaciones de los alumnos? Especificar bajo qué condiciones sobre las va-
riables consideradas se puede resolver este problema y concretar las hipótesis nula
y alternativa que se contrastan. Resolver este problema al nivel de significación 0.1
mediante el uso de diferentes tests, detallando las hipótesis necesarias para la apli-
cación de cada uno de ellos.

Para estudiar si el curso de aprendizaje “no afecta” a las calificaciones de los
alumnos, trabajamos con la variable X = D − A, y con la m.a.s. asociada Xi =
Di−Ai ∀i = 1, . . . , n, con n = 10. De esta manera, no afectar es equivalente a que
la distribución de X esté centrada en 0, para lo cual usaremos el constraste de la
mediana MX . La hipótesis bilateral será{

H0 : MX = 0

H1 : MX ̸= 0

La m.a.s. de X quedaŕıa

(−0.25, 0.75, 0.5, 0, 0.25, 0,75, 0.5, 0.5, 0.5,−0.5)

Por teoŕıa sabemos que, como hay un 0, se elimina ese dato, y se reajusta el tamaño
de la muestra a n = 9. La muestra resultante es entonces

(−0.25, 0.75, 0.5, 0.25, 0.75, 0.5, 0.5, 0.5,−0.5)

En primer lugar aplicaremos el test de los signos.

Test de los Signos de Fisher

Se supondrá que X tiene una distribución continua. Hay un total de 2 signos
negativos, y 9− 2 = 7 positivos. El estad́ıstico es

T = Número de Signos i : Xi > 0⇝H0 B(n, 1/2)

Entonces Texp = 7 y ya sab́ıamos que n = 9. El p-valor sabemos que

p− valor =

{
2PH0 [T (X1, . . . , Xn) ⩽ Texp] si Texp ⩽ n/2

2PH0 [T (X1, . . . , Xn) ⩾ Texp] si Texp ⩾ n/2

En este caso 7 = Texp ⩾ n/2 = 4,5. Obtenemos esta probabilidad usando que
T ⇝H0 B(9, 1/2), luego

PH0 [T = k] =

(
9

k

)(
1

2

)k (
1

2

)9−k

=

(
9

k

)(
1

2

)9

=

(
9
k

)
29
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y

PH0 [T (X1, . . . , Xn) ⩾ 7] = PH0 [T (X1, . . . , Xn) = 7] + PH0 [T (X1, . . . , Xn) = 8]+

PH0 [T (X1, . . . , Xn) = 9] =

(
9
7

)
+
(
9
8

)
+
(
9
9

)
29

=
36 + 9 + 1

512
=

46

512
≈ 0,0898

Entonces p − valor = 2 · PH0 [T (X1, . . . , Xn) ⩾ 7] ≈ 2 · 0,0898 = 0,1796. Como el
nivel de significación que nos dan es α = 0,1, concluimos que no se rechaza H0 con
el test de los signos.

Test de los Rangos Signados de Wilcoxon

Se supondrá que además de ser X continua, como en el caso anterior, es además
simétrica (alrededor de la mediana). Consideramos Di = Xi − 0 = Xi, ∀i =
1, . . . , n = 9. Ordenamos crecientemente los valores |Di|, y luego asignamos el lugar
que ocupan o rango r(|Di|) con i = 1, . . . , n. Sabemos que si hay empates, entonces
se le asigna el promedio de los rangos a cada uno de los |Di| que producen el empate.
Hay en total tres |Di|, que son 0.25, 0.5 y 0.75. Además

1. 0.25 aparece 2 veces, con rangos 1 y 2, luego a cada uno le asignamos el rango
promedio 1,5.

2. 0.5 aparece 5 veces, con rangos 3, 4, 5, 6 y 7, luego a cada uno le asignamos el
rango promedio (3 + 4 + 5 + 6 + 7)/5 = 5.

3. 0.75 aparece 2 veces, con rangos 8 y 9, luego a cada uno le asignamos el rango
8,5

El estad́ıstico de Wilcoxon es:

T+(X1, . . . , Xn) = Suma de los Rangos de los Di > 0

Obtenemos su valor experimental:

T+
exp = T (x1, . . . , xn) = 1,5 + 4 · 5 + 2 · 8,5 = 38,5

La distribución de T+ es simétrica alrededor de n(n + 1)/4 y está tabulada para
9 = n ⩽ 15. En este caso n(n+1)/4 = 9 ·10/4 = 22,5. Como H1 : MX ̸= 0, sabemos
que se rechaza H0 para un nivel de significación α si

T+
exp ⩽ k ó T+

exp ⩾
n(n+ 1)

2
− k

con k aquel valor tal que P [T+(X1, . . . , Xn) ⩽ k] ⩽ α/2. La cola izquierda será para
valores t ⩽ 22, y la cola derecha para valores t ⩾ 23. En este caso, n(n + 1)/2 =
9(10)/2 = 45, y buscamos en la cola izquierda el mayor k tal que:

P [T+(X1, . . . , Xn) ⩽ k] ⩽ α/2 = 0,05

Usando la tabla de Wilcoxon para n = 9:

P [T+(X1, . . . , Xn) ⩽ 8] = 0,049 ⩽ 0,05
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P [T+(X1, . . . , Xn) ⩽ 9] = 0,064 > 0,05

Por tanto, k = 8. Como

38,5 = T+
exp ⩾

n(n+ 1)

2
− k = 45− 8 = 37

se rechaza H0 a nivel de significación α = 0,1.
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