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Inferencia Estadistica. Examen IV

Ejercicio 1 (2,25 puntos). Sea (Xj,...,X,) una muestra aleatoria simple de una
variable aleatoria X con distribucién en una familia paramétrica.

a) Dar la definicién de estadistico suficiente. Enunciar el Teorema de Factoriza-
cién de Neyman—Fisher. Demostrar dicho teorema para variables discretas.

b) Si la funcién de distribucién de X es
Fy(z)=1—e 2>0

encontrar el intervalo de confianza para 6 de menor longitud media uniforme-
mente a nivel de confianza 1 — «, basado en un estadistico suficiente.

Ejercicio 2 (2,25 puntos). Sea (Xj,...,X,) una muestra aleatoria simple de una
variable aleatoria con funcién de densidad
fo(z) ! 1 <x<20
x) = : x
’ 2v/20 — 1y/z — 1

a) Sabiendo que T' = méx X; es suficiente, encontrar, si existe, el UMVUE pa-
ra (20 — 1)~!, especificando previamente el espacio paramétrico y el espacio
muestral. Justificar la no existencia del UMVUE en los casos que corresponda.

b) Calcular la funcién de verosimilitud y encontrar un estimador méaximo ve-
rosimil de 26 — 1.

Ejercicio 3 (2 puntos). Sea X una variable aleatoria con distribucién en una familia
regular en el sentido de Fréchet-Cramér-Rao, cuyas funciones de densidad son de

la forma: ,

0
fo(x) = exp {T(x) Inf — 5 + S(x)} reR, #eR'
siendo T'(X) un estadistico regular.

a) Calcular la funcién de informacién asociada a X.

b) Basdndose en una muestra aleatoria simple de X, (X,...,X,,), y suponiendo
T(X) > 0, encontrar la clase de funciones paramétricas que admiten estimador
eficiente y los estimadores correspondientes.

c¢) Bajo los supuestos del apartado b), calcular la cota inferior para la varianza de
estimadores insesgados de In 6, regulares, y justificar si se alcanza o no dicha
cota.
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Ejercicio 4 (2,4 puntos). Contraste de hipétesis:

a) Sea (X1,...,X,) una muestra aleatoria simple de una variable aleatoria X con
distribucién en una familia {P | § € ©}. Sea ©, subconjunto arbitrario de ©
y supongamos que se pretende contrastar la hipotesis

Hoi 96@0.

al) Detallar la hipdtesis alternativa. Definir formalmente el concepto de test
de hipotesis y dar la interpretacion de sus valores.

a2) Definir el tamano y la funcién de potencia de un test arbitrario para
resolver el problema anterior, explicando el significado de estos conceptos
en términos del rechazo de Hy.

a3) En términos del tamano y de la funcién potencia, ;qué significa que un
test tiene nivel de significacién « para el problema de contraste plantea-
do? ;jCuéles son las condiciones para que un test sea UMP a nivel de
significacién a?

b) Obtener un test de razén de verosimilitud de tamano « para contrastar
Hy:0 <86, frente a H,:0>0,,

basado en una observacién de una variable aleatoria con la siguiente funcién
de densidad (detallar y justificar todos los pasos para la obtencién, incluyendo
el estudio detallado del estadistico de contraste y su representacién grafica):

fo(z) = 0z~ 2e70/=, x> 0.

., Qué tamanos se alcanzan con dicho test?

Ejercicio 5 (1,1 puntos). En cierta academia se pretende hacer un estudio sobre
la efectividad de un curso intensivo de aprendizaje. Para ello, se selecciona aleato-
riamente a 10 alumnos a los que se somete a una misma prueba de control antes y
después del curso, obteniéndose las siguientes calificaciones:

A|725 75 75 8 85 875 8 825 7,25 85
D| 7 825 8 8 875 95 85 875 7,75 8

.Se puede concluir, a la vista de los datos, que el curso de aprendizaje no afec-
ta a las calificaciones de los alumnos? Especificar bajo qué condiciones sobre las
variables consideradas se puede resolver este problema y concretar las hipétesis nu-
la y alternativa que se contrastan. Resolver este problema al nivel de significacion
0.1 mediante el uso de diferentes tests, detallando las hipdtesis necesarias para la
aplicacion de cada uno de ellos.
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Ejercicio 1 (2,25 puntos). Sea (Xj,...,X,) una muestra aleatoria simple de una
variable aleatoria X con distribucién en una familia paramétrica.

a) Dar la definicién de estadistico suficiente. Enunciar el Teorema de Factoriza-
cién de Neyman-Fisher. Demostrar dicho teorema para variables discretas.

Definicién 0.1 (Estadistico Suficiente). Sea (X1,...,X,) una m.a.s. de X ~»
F € {Fy,0 € ©}. Un estadistico T(X1,...,X,,) es suficiente para la fami-
lia de distribuciones considerada (o suficiente para ) si la distribucién de la
muestra condicionada a cualquier valor del estadistico, T'(X7, ..., X,) =1, es
independiente de 6.

Teorema 0.1 (de Factorizacion de Neyman-Fisher). Sea (Xi,...,X,) una
m.a.s de X ~» F € {Fp,0 € ©}. Sea fp la funcion masa de probabilidad o
funcion de densidad de X bajo Fy y sea fy la f.m.p. o f.d.d. de la muestra bajo
Fy. Un estadistico T(Xy,...,X,) se dice que es suficiente si y solo si, para
cualquier valor de 6 € ©,

fo(x, ... xn) = h(zr, .. x0)00(T( Xy, ..., Xy)), Y(xq,...,2,) € A"

donde h es independiente de 0 y go depende de (x1,...,x,) solo a través de
T(zy,...,7p).

Demostracion. Se demostrara por doble implicacion.
—>) Supongamos que T'=T(Xq,...,X,) es suficiente:
P Xi=xz1,.... X =2,) =FPp( Xy =21,...,. Xp =2, T =T(21,...,2,)) =

f’g(Xl =21,..., Xp =, /T =T(x1,...,2,)) Po(T =T (1,...,2,))

h(z1,..., ZTn) QQ(T(x‘lfywn))
(<= Denotamos por X = (X1, ..., X,,) y alas posibles realizaciones muestrales
x = (z1,...,2,). Supongamos que la funcién masa de probabilidad de la

muestra se factoriza segun se indica,
Py(X =x)=h(x)ge(T(x)) VxeX"

Para probar la suficiencia de T se calcula la distribucion condicionada de
la muestra a un valor arbitrario, T' = t.

e 0 siT(x) #t
By(X = x/T = 1) = PQ();(T ’:7;) ) - % i T(x) =t
(T =

Si T'(x) = t, entonces
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Asi, la distribuciéon condicionada es independiente de 6, y T es suficiente
por la Definicion 0.1:

0 siT(x) #t

x' /T (x")=t

t

lo que concluye la demostracion. O

b) Si la funcién de distribucién de X es
Fy(z)=1—e 2>0

encontrar el intervalo de confianza para # de menor longitud media uniforme-
mente a nivel de confianza 1 — «, basado en un estadistico suficiente.

Vemos que X ~» Exp(#), dado que Fy(x) es la funcién de distribucién es la
de una exponencial con pardmetro § € © = R, y X = R". Para hallar el
estadistico suficiente, usaremos el Teorema 0.1. Primero obtenemos la funcién

de densidad OF
fo(x) = (,;Ex) =0 % >0

Calculamos ahora la funcién de densidad conjunta de la muestra

fo @) " T Sl
=1

Suponemos en este punto que § > 0 (de lo contrario, fy(z;) = 0 Vi =
1,...,n), y vemos que

x; >0 VZ:L,H <~ []R+<.T,L—O) =1 VZ:L,H <~ []R+<£L'(1)) =1
de donde se deduce que
>

fo(@, . wn) =[]0 " Ins (20)) = Ip+(x0))0"e  \i=t

i=1
Tomando S(X1,...,X,) =Y X;y
i=1
h(zy,...,2,) = In+ (z1)), go(t) = e

Se cumple que

fo(xe, ... xn) = h(zy, ..o, 20)g0(S (21, ...y 20)) Y(z1,...,2,) € X"
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donde h es independiente del parametro 6 y gs depende de la muestra solo
a través del estadistico, luego, por el Teorema de Factorizacién de Neyman-
Fisher, el estadistico S es suficiente.

Sabemos que S =Y " | X; ~» ['(n,0), ya que X; ~ Exp(§) Vi=1,...,n.

Ahora encontraremos el intervalo de confianza por medio del método de la
cantidad pivotal. Nos piden que el IC esté basado en un estadistico suficiente,
como S. Usaremos la funcién de densidad de la distribucién I'(p, a),p,a > 0
conocida:

P lem x>0

el Teorema de Cambio de Variable, para Y = g(X)

Fry) = fx (g~ ) \%g*(y)\

y la relacién vista en teorfa entre la distribucién I'(p,a) y la x*(n):

X~ x2(n) <= pr(g,%) (1)

Primero consideramos el cambio Y = 0S5 = S = Y/, y entonces

1

Frw) = f(y/6)5 = FQ(;) (5" e 2 = TV e~ Db,y >0

Repetimos el mismo procedimiento con el cambio W =2Y —= Y =2/W,y
entonces

v (w) = frlw/2)-5 = ﬁ (&) eme %/(?)"wn—le—w/? T (n %) w0

Por (1), W ~» I'(n,1/2) <= 20S = W ~ x?(2n) y podemos considerar
como funcién pivote, T : X" x © — R, dado por

que es una variable aleatoria cuya distribucién, x?(2n), es independiente del
parametro 6 (solo depende de n € N). Ademas:

a) T es estrictamente monétona en 6, pues

T 9

%—%<268):25>0, Vo € O, V($1,...,$n)€Xn:(R+)n

b) T = ) tiene solucién en 6, para todo A € A = R*, con A la imagen de T,
pues

T=)\ < 205 =)\ — 0:%GR+
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Por un teorema visto en teoria, sabemos que se puede construir un intervalo
de confianza para 6 a cualquier nivel de confianza 1 — «, con 0 < o < 1. Por
el método de la cantidad pivotal, buscamos \; < Ay verificando

Pg()\1<T<)\2):1—CY

Es decir,

)\1 )\2
M<T <A <= M <205 < )\ = ﬁ<0<ﬁ
y el intervalo tendra longitud

A M AN

28 2§ 28

que es constante, luego coincidird con la longitud esperada Ey[L] = L V0 € ©.

Sea ahora F' la funcién de distribucién de la distribucién x? de Pearson x?(2n),
y sea f la correspondiente funcién de densidad. La restriccion es

1—OCZP9()\1<T<)\2):F()\2)—F(/\1>

Minimizamos Ay — A; con el método de los multiplicadores de Lagrange visto
en teoria

H()\l, )\2) = )\2 — )\1 — /\[F()\g) — F()\l) — (1 — CY)]

donde no se ha considerado la parte constante de la longitud media por no
afectar al procedimiento de minimizacién. Buscamos aquellos A1, Ay que mini-
micen H(Aj, Ay), luego obtenemos sus derivadas parciales

OH 0H

- 1 e I
N +Af(M) g Af(A2)
Ahora, igualamos ambas parciales a 0 y despejamos A:
0OH 1
0=—=—-14+Af(A A=
ox, ~ 1A 7o)
. = . = f(A1) = f(N2)
0=—=1-=-Xf(A A= ——
O f( 2) f()\z)

En este caso, la asimetria de la distribucién hace que los valores A\; y As no sean
los de colas iguales. Sin embargo, la diferencia no es suficientemente importante
(sobre todo para grandes muestras), y en la practica se usa el intervalo de colas
iguales:

AL = X%n;l—a/? Ay = X%n;a/2
siendo P[x3, > X%n;a /2] = «/2. En conclusion, el intervalo de confianza para

f de menor longitud media uniformemente a nivel de confianza 1 — «, basado
en un estadistico suficiente S' es:

] AL A {: ] X%n;lfa/Q Xgn;a/Z [

258728 25 ' 28
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Ejercicio 2 (2,25 puntos). Sea (Xj,...,X,) una muestra aleatoria simple de una
variable aleatoria con funcién de densidad
1
) = , 1<z <26
Jolx) 220 — 1z -1

a) Sabiendo que T' = méx X; es suficiente, encontrar, si existe, el UMVUE pa-
ra (20 — 1)7!, especificando previamente el espacio paramétrico y el espacio
muestral. Justificar la no existencia del UMV UE en los casos que corresponda.

Buscamos obtener el UMVUE mediante el método alternativo visto en teoria.
Para ello, en primer lugar hay que encontrar un estadistico suficiente y comple-

to T, y luego una funcién del estadistico h(7T') (denotaremos indistintamente
not

T = T(Xy,...,X,), para una m.a.s. (Xy,...,X,) con n € N fijo) insesgada
en g(0) = (20 — 1), estimadora y con momento de segundo orden finito.

Entonces h(T) serd el UMVUE.

Ya sabemos que T' = X,y es suficiente por el enunciado. Ahora, hay que
comprobar que este estadistico es completo, lo cual se hard por definicién.
Sabemos por teoria que la distribucion del maximo es

Fr(t) = (Fx(t))" = fr(t) = n(Fx(8))"" fo(t)

Hallamos ahora la funcién de distribucion de X:

Tr =

t t 1 1 t 1
FX(t):/l fa(x)dx:/l NG W 2¢29—1/1 i1l

1 —} 2Vt —1 Vi—1
2¢/260 — 1 2v/20 -1 20 -1

La funcién de densidad del estadistico serd entonces

Jr(t) = n(Fx ()" folt) = n (\/\/2%) _ wﬁm

(Vt—1)~! n n(Vt—1)"?
(V20— 1)"-12¢20 — 1t — 1 2(y/20 — 1)»

Sea h una funcién medible verificando

0 = B[h(T)] < /1 h(t) fr(t)dt = /1 ht)

1<t<26

1<t<20

Wty
2(v20 — 1)

n 20 P

2T 29_1)n/1 h(t)(VE—1)"2dt

como m #0 VneN, Ve @Z}%,-I—oo[, debe ser
26
/ h(t)(v/t —1)"2dt =0
1

10
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Por el Teorema Fundamental del Célculo, podemos considerar una primitiva
H(t) del integrando h(t)(v/t —1)" 2, y esta cumple, por la Regla de Barrow,
que H(20) — H(1) =0 V60 € O. Derivando respecto de 6, se obtiene que

d%H(ZQ) —0 < 2h20)(vV20—1)"2=0 <L R(20) =0
donde en (*) se ha usado que 2(1/20 —1)""2 # 0 por ser § € © y 2 > 0.
Equivalentemente,

VOe© h(20)=0 <= h(t)=0 Vi>1
(tomando ¢t = 260 € |1, 4+o00]). Por tanto
J1,+oo[ S {t: h(t) = 0}
y consecuentemente

1> P[h(T)=0]> P[T > 1] = 1= P[H(T) = 0] =1

y entonces por definicién concluimos que 1" es un estadistico completo. Tene-
mos entonces en este punto que 7' es un estadistico suficiente y completo.

Ahora hay que buscar un estimador insesgado en ¢(f) y de segundo orden
finito. Sea h (independiente de la anterior) funcién medible tal que

(20— 1)"' = g(8) = E[h(T)] = ﬁ /1 h(t)(VE—1)"2dt

V20 —1)"

/26 h(t)(VE—1)""2dt = A (20 —1)"" = 2020 —1)5!

n n

Derivamos respecto de 6 a ambos lados e igualamos. El miembro izquierdo ya
lo tenemos por el apartado anterior:

2h(20)(v/20 — 1)" 2

y el derecho es

2 (ﬁ _ 1) (20—1)32.2= (2 _ é) (20— 1)32 = 21" 4 (99 _ 1)32

n \2 n n

Despejamos h(26):

2h(20) (V2T =12 = 2" 9p )32 s

n

h(29)22n—4 (20 —1)272 _n—2 (20 —1)272 _n—2 1
2n (/20 —1)n2 n (20 —1)n=2)/2 n 20—1
de donde
oy ="—2_ 1
n t—1
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Por construccién h(7') es insesgada en g(0). Vemos que h(T) también es esti-
mador de (), pues © =11/2, +o0[, y 9(f) = 555 = g(©) =0, +-00[. Como
T = Xy > 1, entonces T —1 > 0, y "T_Z > 0sin > 3, luego A(T) > 0 si
n > 3. Queda comprobar que tiene momento de segundo orden finito.

Ello se cumplird en caso de que E[h(T)?] < +oc:

sy [ orrna= [©(22) At

(n —2)? 20 w2 (n—2)? 2 o
W/l (t — 1) )/dt_2n(26—1)n/2(n_4) [(t — 1)=/2] 7 =

(n—2)2 (20 -1)=92  (n-2)2 1

nin—4) (20 —1)"/2  n(n—4) (20 —1)2

Y vemos que E[h(T)?] < +00 <= n > 4, ya que si n < 4, el momento de
segundo orden no es finito. Por tanto, por el Teorema de Lehmann-Scheffé,
E[n(T)/T) = h(T) es el UMVUE para ¢(f), y existe siempre y cuando

n>4 <= n=5

Calcular la funcién de verosimilitud y encontrar un estimador maximo ve-
rosimil de 26 — 1.

Como

1
) = , l<x<26

S W s Wi

Entonces "
n inde
fG (l‘la"'vlﬁ) :prG(xz)
i=1
A partir de aquf asumimos que z; >1 Vi=1,...,n <= x() > 1. En otro
caso, fo(z;) =0 Vi=1,...,n. Tenemos que
r; <20 Vi=1,...,n <= 24 <20 <= Ip-(rn) —20) =

Entonces

indep - - 1

(X1, ..., T,) = x;) = In—(x(n — 20) =
JACH ) er( ) H2\/20—1\/xi—1R(() )

! 1
(2v20 — 1) 11 N (2 ) —26)

La funcién de verosimilitud de 6 serd entonces

o () = f9<x1,...,mn)_(2 m)ng o=t ir (e — 20)

12
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Consideramos la funcién paramétrica A = g(f) =20 — 1, con g : © — A. Por
definicion de funcién de verosimilitud de una funcién paramétrica, consideran-
do una realizacién muestral (xy,...,x,) € X™, con X = |1, +oco[, obtenido del
apartado anterior:

Mxl,...,xn ()\) = sup Lxl,.,.,azn (9)
0eg=1(N)

Ahora expresamos # explicitamente en funcion de A, usando que

A+l

A=20—1 <= A+1=20 < 0 5

Asi pues, la funcién de verosimilitud de la funcién paramétrica g(6) es
A+ 1) 1 4 1
Ma: mn/\ :Lr ey Ty = —I—l'n— A+1
0= Ean (P57) = G L g e = 01

Ahora, puede razonarse que, expresando la funcién de verosimilitud en funcién
de lambda, debe ser z(,) < A+1 <= A > x(,)—1y como ]I, \/#7_1 > 0 no

influye en el estudio de la monotonia, la monotonia la determina =
2V )"
(2v/A)", que es estrictamente decreciente como funcién de X, hecho del cual

se deduce que el maximo se alcanza en el infimo de |z(,) — 1, +oo[. Por tanto,
not

Nz, .. x) = A=2p) —1lesel EMV de A = g(0) = 20 — 1.

13
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Ejercicio 3 (2 puntos). Sea X una variable aleatoria con distribucién en una familia
regular en el sentido de Fréchet-Cramér-Rao, cuyas funciones de densidad son de

la forma: ,

0
fo(z) = exp {T(:U) Infd — 0 + S(x)} reR, #eR*
siendo T'(X) un estadistico regular.

a) Calcular la funcién de informacién asociada a X.

Por el enunciado se deduce que (X7,...,X,) m.a.s de X es de tamano n = 1,
y que solo hay una observacién de X. Por ser T regular, se cumple que

9 BT(Xe, ..., X)] = Ey [T(Xl, LX)

00

81Ilfél(X1,,Xn)
a0

en particular para n =1

9 BT(X)] = Ey [T(X)

2 8lnf9(X)]

00

Primero usamos que la familia es regular

o {M} _0 e {M— } L0 e LB T(X)]-0 =0

Ey[T(X)] = 0*
y entonces QE T(X)] = 2(92) — 920
20" A
Calculando 2
In fy(X) = T(X)In6 — T+ 5(X)
o f(X) T _,
00 0
Como
B [ro0 22580 = [r0) (S5 -0) | = grairey-omiro) <7
SET(X)] ¢
Tenemos que
20 = %EQ[T(X)] — B {T(X)alnaf;()()] _ %EG[T(X)Q] PN

20 = %EQ[T(X)Q] — 0 = Ey[T(X)*] =0(20 + 6°) = 20* + ¢*

14
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Ahora, sabemos que la funcién de informacion asociada a X puede calcularse

usando ,
1 X
(o) = B, | (22 SelX) Vo € ©
00
Desarrollando
In fo(X)\? T(X 2 T(X)\?
Ix(0) = Ey M = FE, L_Q = E, L _Q.T(X)+92 —
00 0 0
T X2 BT (X)) TS B () api g OO
1
§(292+94)—92 =246 — 6% =
b) Basdndose en una muestra aleatoria simple de X, (X3,..., X)), y suponiendo

T(X) > 0, encontrar la clase de funciones paramétricas que admiten estimador
eficiente y los estimadores correspondientes.

Buscamos aplicar el Teorema de Caracterizacion de Estimadores Eficientes.
Para ello, obtenemos la funciéon conjunta de la m.a.s. de X

fi@r o x) "= falw)
=1

Se supondrd a partir de ahora que z; € R Vi = 1,...,ny 6§ € R*. De lo
contrario, fp(z) = 0.

F3ens . v20) "0 T folae) = [ (7m0 5 +50) (0t T2 50) _
=1

=1

In (21, ..., 20) =Inb (Z T(xi)> - ”792 + ZS@;)
dIn fé‘(fglé- - Tn) _ % (Z T(q:i)> —nf = % (; T(X;) — n02>

Ahora, supongamos que T'(Xy,...,X,) es un estimador de g(¢) funcién pa-
ramétrica derivable y estrictamente mondtona (¢'(f) # 0 V8 € © = RY).
Como el enunciado nos dice que la familia es regular, y 0 < Ix(f) = 2 <
+oo VO € O, T es eficiente si y solo si V8 € ©  Ja(f) # 0 tal que

P, lf)lnfe ()glé,Xn)

— aO)[T(X,.. ., X,) — g(en] 1

15
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y

Como
oln f2(X1,..., Xn)

% (Z T(X;) — n02> =a(0)[T(X1,...,X,) — g(0)]

claramente por comparacion se obtiene que
T(Xla"'aXn) = ZT(XZ), g(e) :7192, a(@) = —
i=1

y tanto a(€) como g() verifican todas las condiciones del teorema, pues ¢'(0) =
2nf > 0, porque 6 > 0 y 2n > 2, y usando la aditividad de la funcién de
informacion de Fisher
1
2n =nlx(0) = Ix,,  x(0) =a(®)g'(0) = anH =2n

Por un corolario visto en teoria, como T'(X7, ..., X,) es un estimador eficiente
para g(#), con ¢'(f) # 0, sabemos que las tinicas funciones paramétricas que
admiten estimadores eficientes son las de la forma ag(f) + b y los correspon-
dientes estimadores eficientes son al" + b, con probabilidad 1, bajo todas las
distribuciones de la familia.

Bajo los supuestos del apartado b), calcular la cota inferior para la varianza de
estimadores insesgados de In 6@, regulares, y justificar si se alcanza o no dicha
cota.

En este apartado ¢g(#) = Inf. Ya se han comprobado las hipétesis del Teorema
de Cota de FCR en el apartado b), y supuesto que los estimadores insesgados
sean ademds de segundo orden (si no, la varianza no serd finita), se tiene que
la cota inferior de la varianza es, tomando como uno de estos estimadores

(X, ..., Xn):
(9'(0))?
Ix,,...x.)(0)

Ahora, ¢'(§) = 1/6, y ya hemos visto que I(x, . x,)(0) = nlx(0) = 2n, luego
la cota inferior para la varianza de todo estos estimadores serd

Varg[T(X1, ..., Xn)] > Vo €O

Van[T(X,,... X)) > S0° _ 1

2n  2nh?
La cota no se alcanza por reduccién al absurdo. Si lo hiciera, entonces tendriamos
que g(f) = Inf admitiria un estimador regular, insesgado y cuya varian-

za alcanza la cota de FCR para cualquier valor § € O, es decir, un es-
timador eficiente (dado que {Fy : § € © = R} es una familia regular,
0<Ix(@)=2<400 VOe€Oyg(d)=Inb es una funcién paramétrica deri-
vable). Sin embargo, hemos visto en b) que las tinicas funciones paramétricas
que admiten estimador eficiente en esta familia son las de la forma anf? + b,
a,b € R. Como fa,b € R :1nh = anh? + b, hemos llegado a contradiccién.
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Ejercicio 4 (2,4 puntos). Contraste de hipétesis:

a) Sea (X1,...,X,) una muestra aleatoria simple de una variable aleatoria X con
distribucién en una familia {P | § € ©}. Sea ©, subconjunto arbitrario de ©
y supongamos que se pretende contrastar la hipotesis

H02(9€@0

al) Detallar la hipdtesis alternativa. Definir formalmente el concepto de test
de hipotesis y dar la interpretacion de sus valores.

La hipdtesis alternativa es la negacion de la hipdtesis nula Hy, y se denota
por
H1:9€®1=@—®0

El problema de contraste de hipdtesis, en general, es el siguiente: se cons-
trasta la hipotesis nula, Hy : 0 € ©g, frente a la hipdtesis alternativa,
H, : 6 € ©,. La hipotesis sobre el parametro establece una particién so-
bre el espacio paramétrico, pues © = Oy U O, y Oy N O; = (), y ademds
sobre la familia de distribuciones, ya que

{Fg,e € @} = {Fg,@ < @0} U {F@,e € @1}

La definicion formal del concepto de test de hipotesis es la siguiente:

Definicién 0.2 (Test de Hipétesis). Un test de hipotesis es un estadistico,
©(X1,...,X,), con valores en [0,1], que especifica la probabilidad de
rechazar Hy para cada realizacion muestral.

Distinguimos dos tipos de test de hipotesis, los no aleatorizados y los
aleatorizados.

En los no aleatorizados, se considera la region critica o de rechazo C C A™,
que es aquella en la que se rechaza con probabilidad 1 la hipdtesis nula
Hy y el test se puede escribir como ¢ : X™ — {0, 1}, dado por

1 i(Xq,...,X
SO(Xh’Xn):{ Sl( 1 ; n)GC

0 si(Xi,...,X,)¢C

En los aleatorizados, el codominio del test se extiende a [0, 1], y el test es
¢ X" — [0,1], donde p(X7,...,X,) es la probabilidad de rechazar la
hipdtesis nula Hy en cada realizaciéon muestral, al igual que en el caso de
los tests no aleatorizados.
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a2)

a3)

Definir el tamano y la funcién de potencia de un test arbitrario para re-
solver el problema anterior, explicando el significado de estos conceptos
en términos del rechazo de H,.

Se define la funcién de potencia de un test arbitrario como sigue:

Definicién 0.3 (Funcién de Potencia). Para un test ¢, se define la fun-
cion de potencia como la funcién que asocia a cada parametro, 6, la proba-
bilidad media de rechazar H, cuando el (verdadero) valor del pardmetro

es 0
B, © — 0,1]
0 — By(0) = Eglp(X1,...,X,)]

En el caso de un test no aleatorizado, se puede definir como

B, © — [0,1]
0 — B,(0) =PF(Xy,...,X,) €]

Asimismo, se define el tamano de un test arbitrario de la siguiente forma,
recordando que un error de tipo I consiste en rechazar la hipotesis nula
Hj siendo esta verdadera:

Definicién 0.4 (Tamano de un Test). Para un test ¢, se define el tamario
del test como la maxima probabilidad media de cometer un error de tipo
I con dicho test, es decir

sup Eplp(X, ..., X,)] = sup B,(0)
[ZSSH) €O

En el caso de un test ¢ no aleatorizado, se puede definir como

sup P@[(Xla S 7Xn) S C]
ISSH)

En términos del tamano y de la funciéon potencia, ;qué significa que un
test tiene nivel de significacién « para el problema de contraste plantea-
do? ;Cuéles son las condiciones para que un test sea UMP a nivel de
significacion o

El nivel de significacién se define por:

Definicién 0.5 (Nivel de Significacién). Se dice que ¢ es un test de
hipdtesis con nivel de significacion « € [0,1] si su tamano es menor o
igual que « (actuando o como cota superior de las probabilidades medias
de cometer un error de tipo I), es decir:

Vo € @0a 5(9(9) = EG[@(le s 7X7l)] < «Q
En el caso de un test ¢ no aleatorizado, se puede definir como

VQGG(), Pg[(Xl,...,Xn)GC]<&
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Por lo tanto, un test tiene nivel de significaciéon « € [0, 1] si su tamano,
es decir, el supremo de la funciéon de potencia en el espacio paramétrico
de la hipétesis nula, es menor o igual que a.

Se dice que un test es uniformemente mas potente a nivel de significacion
« si verifica la Definicién 0.6:

Definicién 0.6 (Test Uniformemente Mas Potente (UMP)). Dado un
nivel de significacion « fijo, se dice que un test ¢ es uniformemente mds
potente (UMP), a ese nivel, si se cumplen las siguientes dos condiciones:

1) ¢ tiene nivel de significacién «a, es decir
E@[@(Xl, ... ,Xn)] <a Ve

2) Para cualquier otro test ¢*, con nivel de significacién «, se cumple
que la funcién de potencia en ¢ es mayor que en *, para cualquier
0 € ©,. Equivalentemente

B,(0) > B,-(0) V0 €O,

El hecho de considerar la maximizacién solo en ©; y no en 0, la funcién
de potencia se debe a que se busca minimizar el error de tipo 11, que
consiste en no rechazar Hy siendo H, falsa.

En general, no tiene porqué existir un test UMP para un problema dado.

b) Obtener un test de razén de verosimilitud de tamafio «a para contrastar
Hy: 6<86, frente a Hy: 0 >0,

basado en una observacion de una variable aleatoria con la siguiente funcién
de densidad (detallar y justificar todos los pasos para la obtencién, incluyendo
el estudio detallado del estadistico de contraste y su representacién grafica):

—2 -0
folz) = Oz 2e70/%, x> 0.
. Qué tamanos se alcanzan con dicho test?

Dado que las hipétesis no son simples, no podemos aplicar el Lema de Neyman-
Pearson, por lo que habra que utilizar el Test de la Razén de Verosimilitudes
(TRV). Se tiene que X = R y la muestra se compone de una tinica observacién
(pongamos que x es el valor obtenido en la realizacién muestral). Obtenemos

ahora el EMV de 6.
Ly (0) = fo(xo) = Ozy%e " = In fy(20) = Inh — 21Inzo — 0/x0 =

dln fy(xo)
00

_1 1_5(]0—9
_9 IO— 1'06
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Resolviendo la ecuacién de verosimilitud

dln fo(zo) To—0 B
50 =0 <— o =0 <= 0 =ux

Como

se tiene que 6 = xo es el EMV de 6. La razén de verosimilitudes es entonces

Sup@EQQ LIO (0)
SUPpce Lay (0)

)\([E()) = , T € X

Como 6 es el EMV de y, entonces supyce Lo (6) = La, (). Ahora, estudiamos
la monotonia respecto de 6 de la funcion de verosimilitud

L, (0 —1 0
on (9) = 61'62679/960 = 88—00() = 3762 (69/360 + eea/xol‘_o) = x62€79/x0 (1 — q,‘_o)

Como z5%e~%7 > 0 el signo lo determinard el factor 1 — 0/xzy. Hay tres
posibilidades:

a) Sil—0/zg <0 <= 1< 0/xy < xy < 6, entonces L,,(0) es
decreciente.

b) Sil—0/xg >0 <= 1> 0/xy < x¢ > 0, entonces L,,(f) es creciente.

c) Sil—0/xg =0 <= 1=0/xy <= 60 = xg, sabemos que se llega al
EMV de 6.

Por lo tanto, L,,() es creciente en |0, zo[ y decreciente en |zq, +oo[. Usando
esto, se deduce que

on (ilj'o) si Zo < 60

€0 Lzo (90) si xg > 6

sup L,,(0) = {

y €omo

Lm(‘gﬂ) _ 601‘626760/% — %61*90/900
Ly (z0)  xoxgie—m0/a0

la razén de verosimilitudes se escribe de la siguiente forma

LSCO (ZL‘())
LIO (IO)

=1 Si$0<00

Azo) =
Lay(00) _ @61_90/990

si xg > 90
mo(ﬂvo) Lo

Por construccién 0 < A(zg) < 1, y el test de razén de verosimilitud (TRV) es:

1 siAX)<e
0 siANX)>c
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donde ¢ €]0, 1] es constante y se determina imponiendo el tamano o nivel de
significacién « € [0, 1].

Estudiamos ahora la monotonia de A. Si £ > 6, consideramos el cambio de
variable t = 0y/x € 0, 1] (como fy(x) es densidad, debe ser § > 0 para que
pueda integrar a 1, y x € X = R"), de donde \(z) = te!~* = g(t). Como

gty =e"trtet Tt (=) =1 —t) >0 Vteo,1]

vemos que g es creciente en t, pero t = 6y/x crece si x decrece, luego A(z)
es estrictamente decreciente en |0y, +00[. Ademds A(fy) = 1y lim A(z) = 0.
T—r00

Graficamente:
A
1
C ,,,,,,,,,,,,,,,,,,,,,
to
Luego

A<c x>k
A}c}(:}{xgk con k > 6,

Por lo que el test a considerar seréa:

1 siX >k
X) =
#(X) {0 si X <k

Imponemos tamano a:

a = sup Eglp(X)] = sup Fy[X > K]

0€Bg 0<6o
Como
folx) = 0z~ 2e70/=
0
entonces considerando el cambio v = 0/t = t = 0/u = dt = ——.
u

t72 = (u/0)?, sustituyendo
—2,—0/t 11 _ E 2 —u [ 0 — _ U
Ot e ""dt =0 <0> e ( 2 du) e "du

y viendo que sit - 0f = u =0/t » 400 ysit =2 = u = 0/x, se tiene
que

Fy(x) = /Ot fo(t)dt = /Ot 02 0 qt =
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0/x 400
/ —e Mdu = / e tdu = [—e " = e~b/e
0

+o0o T

Asf pues, para x € X, Fp(x) = e de donde
PylX >kl =1—Fyk)=1—e*
Entonces el tamano queda

a=sup Py[X > k] = Py [X > k] =1— ¢ %0/*

0<6y

vy k queda determinado por

a=1-e""" —= a-1=—%* = l-a=ec%* —= In(l-a) = —b/k —
)
b= T In(1—a)
y el TRV no aleatorizado es
0o
1 siX>———
A In(1 — «)
p(X) =
0o
ix<_
0 si In(1 — )

Los tamanos que se alcanzan con este test pueden hallarse considerando el
tamano como funcién de k

aky=1—¢ k>0

Vemos que
lim (k)= lim (1 —e %) =
k—4o0 k—+o00
1— lim e*=1-¢"=0
k——+o0

y que el menor k se obtiene cuando k = 6, con a(fy) = 1 — e %/% =1 — 71,

Por lo tanto, los tamanos que pueden obtenerse con el TRV no aleatorizado
son
ac0,1—e]

Para obtener cualquier tamano « € [0, 1] hay que aleatorizar el TRV, es decir,
considerar un test de la forma

1 siANX)<ec
p(X) =497 siAX)=c ~€][0,1]
0 siAX)>c

Y como A\(z) =1 Vo <byy ANx) <1l Vx> 6, lonatural es tomar c =1,y
entonces
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1 siAMX)<1 <= X >0
P(X)=<v siAX)=1 <<= X <6 ~ve€]0,1]
0 si A(X) > 1 nunca

es decir

1 SiX>90
X) = e0,1
o) {7 X h e

Si X > 6 se rechaza siempre, y si X < 6y se rechaza con probabilidad .
Imponiendo tamano a:
o = sup Bylp(X)] = Eip [p(X)] = Py [X > o] + 7Fy[X < 6]
€060

y como
PQO[X>60]:1—€71 PgO[Xét%]:e*l

Sacalnos

a=(1—-et)+~ye!

De esta manera, dado un tamano « € [1 — ¢!, 1], se obtiene que

— (1 —et
a=(l-eHtye ! <= a—(l-e N =qe ! &= = w €0,1]
e
y el TRV aleatorizado es
1 siX > 90
X) = _ _ -1
e(X) o (116 ) S X < 6y
T
Y ya podemos cubrir cualquier tamano « € [0, 1]:
a) Sia€[0,1—e7, el TRV que se toma es el no aleatorizado:
0o
1 siX>————
. In(1 — «)
p(X) =
0o
0 si X< ——F——
. In(1 — «)
b) Sia€[l—et 1], el TRV que se toma es el aleatorizado:
1 si X > 6,
X —= _ 1 _ —1
AN =qa0-ch Gy g,
=
Sia=1-e¢!
0
1 siX>——702
In(1 — «a) 1 si X > 6,
p(X) = — —(1—et
(X) 6, w —0 si X <6
0 siX<——F——— €
In(1 — )

por lo que el TRV no aleatorizado y el TRV aleatorizado coinciden.
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Ejercicio 5 (1,1 puntos). En cierta academia se pretende hacer un estudio sobre
la efectividad de un curso intensivo de aprendizaje. Para ello, se selecciona aleato-
riamente a 10 alumnos a los que se somete a una misma prueba de control antes y
después del curso, obteniéndose las siguientes calificaciones:

A‘7,25 75 75 8 85 875 8 825 7,25 85
D‘ 7T 825 8 8 875 95 85 8§75 7,75 8

..Se puede concluir, a la vista de los datos, que el curso de aprendizaje no afecta
a las calificaciones de los alumnos? Especificar bajo qué condiciones sobre las va-
riables consideradas se puede resolver este problema y concretar las hipétesis nula
y alternativa que se contrastan. Resolver este problema al nivel de significacién 0.1
mediante el uso de diferentes tests, detallando las hipétesis necesarias para la apli-
caciéon de cada uno de ellos.

Para estudiar si el curso de aprendizaje “no afecta” a las calificaciones de los
alumnos, trabajamos con la variable X = D — A, y con la m.a.s. asociada X; =
D;—A; Vi=1,...,n,conn=10. De esta manera, no afectar es equivalente a que
la distribucion de X esté centrada en 0, para lo cual usaremos el constraste de la
mediana M. La hipétesis bilateral sera

HO : MX =0
Hy: My #0
La m.a.s. de X quedaria
(—0.25,0.75,0.5,0,0.25,0,75,0.5,0.5,0.5, —0.5)

Por teoria sabemos que, como hay un 0, se elimina ese dato, y se reajusta el tamano
de la muestra a n = 9. La muestra resultante es entonces

(—0.25,0.75,0.5,0.25,0.75,0.5,0.5,0.5, —0.5)

En primer lugar aplicaremos el test de los signos.

Test de los Signos de Fisher

Se supondra que X tiene una distribucién continua. Hay un total de 2 signos
negativos, y 9 — 2 = 7 positivos. El estadistico es

T = Nuamero de Signos i : X; > 0 ~p, B(n,1/2)

Entonces T¢,, = 7 y ya sabifamos que n = 9. El p-valor sabemos que

2Py [T( Xy, ..., Xpn) < Teyp) i Tewp <njf2
p — valor = ‘
2PHO [T(le cee 7Xn) 2 Te:pp] S1 Te:pp 2 n/2

En este caso 7 = T,,, > n/2 = 4,5. Obtenemos esta probabilidad usando que
T ~p, B(9,1/2), luego

- () (- () ) -
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P [T(X1, ..., X0) 27 = Py [T(X1, ..., X)) = 7] + P, [T(X1, ..., X)) = 8]+

D+G) +() 36+9+1 46

Py [T(Xy,...,X,)=9] = 8 9 — -~

o [ T'( X1,y Xn) = 9] 5 =B =15 ~ 00898
Entonces p — valor = 2 - Py, [T(X1,...,X,) = 7] =~ 20,0898 = 0,1796. Como el
nivel de significacion que nos dan es a = 0,1, concluimos que no se rechaza H, con

el test de los signos.

Test de los Rangos Signados de Wilcoxon

Se supondra que ademés de ser X continua, como en el caso anterior, es ademas
simétrica (alrededor de la mediana). Consideramos D; = X; — 0 = X;, Vi =
1,...,n=29. Ordenamos crecientemente los valores |D;|, y luego asignamos el lugar
que ocupan o rango r(|D;|) con i = 1,...,n. Sabemos que si hay empates, entonces
se le asigna el promedio de los rangos a cada uno de los | D;| que producen el empate.
Hay en total tres |D;|, que son 0.25, 0.5 y 0.75. Ademés

1. 0.25 aparece 2 veces, con rangos 1 y 2, luego a cada uno le asignamos el rango
promedio 1,5.

2. 0.5 aparece 5 veces, con rangos 3,4,5,6 y 7, luego a cada uno le asignamos el
rango promedio (3+4+4+5+6+7)/5=5.

3. 0.75 aparece 2 veces, con rangos 8 y 9, luego a cada uno le asignamos el rango
8,5

El estadistico de Wilcoxon es:
T*(Xy,...,X,) = Suma de los Rangos de los D; > 0
Obtenemos su valor experimental:

Th =T(xy,...,2,) =15+4-5+2-85 =385

exp

La distribucién de Tt es simétrica alrededor de n(n + 1)/4 y esta tabulada para
9=n < 15. En este cason(n+1)/4 =9-10/4 = 22,5. Como H; : Mx # 0, sabemos
que se rechaza H, para un nivel de significacion « si

con k aquel valor tal que P[TT (X7, ..., X,,) < k] < a/2. La cola izquierda sera para
valores ¢ < 22, y la cola derecha para valores t > 23. En este caso, n(n +1)/2 =
9(10)/2 = 45, y buscamos en la cola izquierda el mayor k tal que:

P[TH(Xy,...,X,) <kl <a/2=0,05
Usando la tabla de Wilcoxon para n = 9:

P[TH(X1,...,X,) <8 = 0,049 < 0,05
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P[TH(Xy,...,X,) <9] =0,064 > 0,05
Por tanto, k = 8. Como

385=T" > n(n+1)

exp = 2

—k=45-8=37

se rechaza H( a nivel de significacién o = 0,1.
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